Potential PM2.5 and CPM Pitfalls in Permitting, Testing and Compliance

NCASI Southern Regional Meeting June 10, 2014

Glenn Rives, International Paper John Egan, All4 Inc.

- Project overview
- PSD applicability assessment
- Permitting strategy
- PM2.5 and CPM baseline data
- Compliance testing results
- Critical review and planning
- Outcome and learnings

Project Overview

- Bleached and unbleached Kraft Mill
- Modifications to pulp lines
- Production increase
- Debottlenecked recovery operations

PSD Applicability

- Actual-to-projected actual assessment
- No contemporaneous projects
- Decreases in some pollutants due to project
- No project netting

Project Emissions Baseline Data

- Baseline data from reported emissions
- Missing data for PM2.5 and CPM
- Test data and NCASI factors
- Projected actuals conservatively estimated

Project Emissions Increases

- PSD applicability Step 1 project increases
- Project increases alone PSD significant for:
 - VOC, NOX, PM, PM10, PM2.5

	VOC	NO _X	PM	PM ₁₀	PM _{2.5}			
Step 1								
Total Project-Related Emissions Increases	48	193	93	82	65			
PSD Significance Levels	40	40	25	15	10			
Step 1 - Project Increases Exceed PSD Significance Levels?	Yes	Yes	Yes	Yes	Yes			

Biogenic deferral for CO2e

Permitting Strategy and Boiler MACT

- Coal boiler conversion to natural gas option
- Emission reductions available for netting
- Other project reductions made federally enforceable
- Net decreases less than PSD significant
- Construction permit issued with testing requirements including PM2.5

Summary of Project Emissions

	VOC	NO_X	PM	PM_{10}	PM _{2.5}
Step 1					
Total Project-Related Emissions Increases	48	193	93	82	65
PSD Significance Levels	40	40	25	15	10
Step 1 - Project Increases Exceed PSD Significance Levels?	Yes	Yes	Yes	Yes	Yes
Step 2					
Emission Increases During the Contemporaneous Period	7	-	-	-	-
Emission Decreases During the Contemporaneous Period	17	183	81	71	56
Total Net Emissions Increase	38	10	12	11	9
PSD Significance Levels	40	40	25	15	10
Step 2 - Net Increases Exceed PSD Significance Levels?	No	No	No	No	No

Criticality of PM10/PM2.5 Emission Data

- Recovery area sources largest contributors to increases
- Concern with lack of data therefore pre-project testing
- Results compared with other IP and NCASI data
- Projected actual emissions set conservatively with margins added

CPM Emission Factor Evaluation (Pre-project)

CPM Stack Test Demonstration (Post-project)

1.15 lb CPM/TBLS-virgin

4 times higher than expected

Mostly organic > 80 wt%

~ 195 ppmdv as carbon

or

~ 53 ppmdv as propane

Critical Assessment Systematic Review - Possible Explanations

- Changes in Operating Conditions?
- Physical or Chemical Changes?
- Sample Collection/Analysis?
- True Emissions Variability?

Process Review

- Similar process & operating conditions all test programs
- No physical/operational changes

Previous Stack Test Programs

- CPM coupled with M201A trains
- Test plans/equipment selected to satisfy M201A cyclone cut point constraints
- Insufficient sample volumes/collected mass for CPM
- No Train/Field Reagent Blanks

Re-test Planning-1

- Use CEMs to confirm exhaust gas levels of CO and total hydrocarbons are within expected ranges
- Extend CEMs monitoring over several days to characterize typical values and ranges
- Collect and analyze Liquor and Smelt Chemical Composition, HHV

Re-test Planning-2

- Reduce sampling equipment/reagent residues
 - Confirm Field/Lab Glassware & Reagent purity in advance
 - 4 Sampling Train Recovery Blanks
- Increase measurement certainty by:
 - Increasing sample volumes (> 75 cubic ft/run)
 - Targeting > 50 mg CPM
 - Tightening constant weight criteria to +/- 0.2 mg
 - Using only glass or Teflon® weighing containers

Re-test Results

Two 3-run series each RB

Average CPM = 0.05 lb/TBLS virgin

In Expected Range

Predominately inorganic CPM

Conclusions and Takeaways

- CPM and lower PM2.5 permitting thresholds bring scrutiny to very small "projects"
- Don't wait till you have a "project" to test CPM
- Develop a site-specific CPM and PM2.5 emission "history"
- Don't over complicate the test constraints decouple M201 and M202
- Rely on literature emission factors to put you in the ballpark – don't count on for "compliance"
- Design and execute test programs to answer critical questions at appropriate certainty level
- Don't set yourself up for surprises